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KBRS REFEGBAAGER B E I
A % (Ryo UCHIUMI) *

T

BRRECTER SN 2B FHELEICN LT, MET % mod ¢ FLEDMZER O _EIFRER L
U TR EZIHA N ER S NS, ZhUE, ¢ KT 2HZEATHY, BVHEEDORD BEL
AERTH 2REZHAZ2EATVS. AT, BFEEECEREOMEMZS5 2, @A
ED mod ¢ fMZERICE T 2 BHEIRICOWTEE T 2. ZOEIREED ¢ 1T 2 HEZIHAT
HoZt, FAZMRD Ehrhart #ZHAZHNTRT I B TE L I Z2HMNT 5.

1 Introduction
1.1 Hyperplane arrangement

V 2K K Lo ¢ RotkiEZER e 5. V OBF@E (hyperplane) &, VDL -1 (77 4
V) HpEEOZ WS, TabE, V O@EFH H X, FTHRVWIEEK oV — K &ERK
be KzH\nT

H:ofl(b):{:UGV‘a(m):b}

rRIN5. V LOBTEEE (hyperplane arrangement) 21X, V OBFEHOARESFDOZ &
VWS, EFHEEEOMRE, RESHAERZTTRL, MRy —REGEM, ICABYREZ
51275 (cf. [Yos25)).

V Lo VFHAE A O TEE (FIDEE) BITL T,

_— \% B =0;
T \NuesH B#D

CEDD. ADFEZIEN (characteristic polynomial) & i3,

xa(t) = 3 (~1)#Bpm e
BCA
Hp#0

DZrxEWVI. xa4(t) EXE L = dim V D monic ZIHATH 3. KT,

e (=1DLE, yA(t) =t — #A

* E-mail: uchiumi.ryou.lxu@ecs.osaka-u.ac.jp / ryo.uchiumi.math@gmail.com



e /=20t X%,
xa®) =2~ #At+ Y (#{He A|H>p}-1)
pr
5.

Rt 2IERIE, A OB PHEHZBEAED L SITZDoTVWERE WS TERZ I 1 5B 602 ZHAT
H5. —)7C, FEZHENXIEVFEEE A BT R4 REREZAELTBD, BYHKEDRD H
BERAEETHI20wbNd bbb, - 213, BFHEE A OMZEM

MA)=V\JH
HeA
WKELT, ROZepHoshTw3.
Theorem 1.1. A% K LOMEZEM V LoOBFHEE L 3 5.
o (Zaslavsky 1975) K=R ThH 3 &, AP d—20 (0 X0) Rk b TIH,
— M(A) OERE T DIERBIE [xa(—1)];
— M(A) OF Sz 8o OMERIE [xa(1)].
e (Orlik-Solomon 1980) K=C TH» % & %, M(A) ® Poincaré ZIHAIIR L F L

(=) xa(=t71).

1.2 Characteristic quasi-polynomial

L= 7°%#&¥ (lattice) ¥ L, Lg = LR £ ¥ 5. FUEEZHEROLDIC, T L L TERSN
ZEFHEEZ ERT 5. LY =Hom(L,Z) % L DX $5. BETRWIT ay,...,a, € LY %[
EL, Lr OfYFH H; %

H,=H,, = {xELR ‘ a;(x) :0}
TERTZ. COXS5%7EVPHZ L ETERSAL2BEIHEVWY, ZRoDHERES A =
{Hy,...,H,} # L FTERIhZBEFHEEL VNS, DF D, L FTEREINLBFmIE, ¥
B DO—XAZHWTREINS XS REFHTH 5.

BEE g€ Lo TNLT, Ly=L/qL ¥ BE, 7,: L — L, ZBRITERI NI LT 5.
B H; LT, L, @ ETE &

H;, = {ﬂq(x) €L, | a(x)=0 (mod q) }
TED, L, Lo “@VHRE” A, = {Hi,q,...,Hyq} OFZEH

M(A;q) = Lg \ U H;q

Hi,quq

:{ng)eLq

ai(z) Z0 (mod q) forallie {1,...,n}}

LzorE, AIAXER (essential) THZ LS.



BEZD. ZORREEGDME #M(A;q) ITOWT, XD HFHNTNS.

Theorem 1.2 ([KTTO08, Theorem2.4]). #M(A;q) 1 q BT 2HZIHATH L. T4bb, IE
B € Zog £ ZHER D, f) € Zt] BIFELT,

#M(A;q) = fT(q) if ¢g=7 (mod 7).
X512, Rehl=73:

(1) ged{n,r 1} =ged{n,ro} THB & =, flr) = f(r2) (gcd-property);
(2) ged{n,r} =1TH3r %, f 13 ADFHEZENR x4 ITFE LW,

ZoHEZIEN T A D4 #EZ AT (characteristic quasi-polynomial) & FECX, X?‘{laSi TRT:

X4 (q) = #M(A; q).

LRIV O DZHRXZANRZLS5KBDTH D, FHNLZHAX L Ebhs Ze2d 5.
ER 7 3HEZIER O AR (period), #ZHERK f(M IZEZIEA D r MK (r-th constituent)
IEENnG. EZHAXOFAIE BN TIERNI LIERT 5. AR 5 2 FEHD S bHR/hD
b D MEZTHX O R/INVEHR (minimum period) £\ 5.

Theorem 1.2 (2) IC X3 &, ¢ B HARELEHTHL, XY (q) = xa(q) LR 2*2. Likdio
T, /&7 L ECTERIND &5 REFHAE A ORFEZENIZ, W20+ RKEREL ¢ 13t
T3 M(A;q) DBAEFICE->TRHETE 2 Z b h 5",

Example 1.3. L=7%2 ¢ L, L Lo FHAE A= {H,, H} %
H, = { (z1,29) € R? ‘ 1 ZO}, Hy, = {(131,.73‘2) € R? ’ 3o ZO}

TEDS. AOFRMZHENE xa(t) =2 -2t +1=(t-1)2 Th 3.
B q € Lso ITRLT,

M(Aq) = { (@1,22) € (2/q2)* | @1 £0, 322 20 (mod q) }
THo0bH,

X?AuaSi(Q) = #M(A7 Q) = #{ (.’131,(1?2) S ZQ O S T1,T2 < q, I1 7& 07 T2 g {07 %7 %}}

(g—1)° if ged{3,q} = 1;
(g—1)(¢g—3) ifged{3,q} =3

L.

*2 ZoHEHEIF, Kamiya-Takemura—Terao L1225 bHI STV (cf. [Yos25, §12.2]).
Bz &I U TREZEA R E T 2 HIREERAE (finite field method) X FEEN TV 3.



1.3 Group representation

ZOHEIT, ARHORBFICOWTARICHELRENZ T LD 3.

I z6REE, V2 C LofEEMe 5. #ERMEp . I — GL(V) 2T oV LoXRR
(representation) X\ 5. EBi p DIEIF (character) L3, I' OB x, = trop D Z & 2L
5. RL, tr 3EERD L X2 5 X 5K THB. LUIT, I ORBOIEEZBEIZ ' OFEE
v,

I OB (class function) 21X, B¥ p: [ — CT

plo™to) =p(y) foryoel

iz 0%V, I OFBEBEKRE Cl(IN) TRT. CUD) & I’ DEEBEREED 72 3 NFEZERH
DOEFEETH 5. J272L, WX

(¢, ¢) = #FEZ

yel’
THZoN5. [ OEEEHEBEEKT, I OBRIEE2K {x1,. ..,Xk} i3, CI(F) DIFRERREKZ
5. I OO EHBFBRE O —FEETRINS [ OEBEE D

Clo(I) = {m1X1 Yoo mpy € CUT ‘ m; € @}

3%, Clo(I') OILh I’ DIEETH 3 7-D121X, I’ OEHEREOIEABRRBO—XiEE L L TR
¥5IEBREFIITTHS.

BIRAE T 2ARESE X EHLTW2 295, $78bb, I'E X OO IR A8 5.
X TAEREN S C LOARRITHILZEM CX = P, Co TR LT, T DFEAIC & o THHER Y
px : I' — GL(CX) 2%&%%. Zhz X OBE#RKRE (permutation representation) &\ i,
ZDIEIE X, & X OBERIEIR (permutation character) ¥\ 5. &~y e 'L T, CX DX
& X BT % px(v) ORBUTHNZESLITIITH 2. Lo T, X DEHEEIX

MWW):#{xGXWVx:x} (1.1)

7z 3
ﬁﬁﬁﬁif &, Ero0EP5IERITETEINOIEHZ D, ZOMFHICL > TR EIRE
BUIIEAIRIE (regular representation) L FHIN 5. [EHIRBIOfEGZ yg TERT & %, K (1.1)

IZ&koT
4T iy =1;
Xr(Y) = {0 if y £ 1
&5,
H% T Ofn#r3%. HOWHEO: H— CZBW3 I’ OFEIE (induced character)
Yid, RCEEZHEMIL0: T —Cozrrznd:

(mdge)(y):#lﬂ S 6o 10).
oel’

o 'yoecH



1.4 Equivariant Ehrhart theory

LZTeLl, Lp=L@R¥23%. PCLg ZEMZHKLTS. 2Fh, PRIIXRTOHELD
FHETHEEIOIRZHEKTHS. B q Zog iTHLT, P% qfECESXELZHIKE gP TF
T. ZDOrE, gP FLOMTFEERZ LT 2B

Lp(q) =#(qPNL)

g IcBT 2R IEN 2 2. 2k Ehrhart #%I83( (Ehrhart quasi-polynomial) & ¥
K. PORFZHEAR (TXTOHERD L EI2H2ZHIK) TH5 %, Lp FHICZIHN (&AW1
DHEZIHN) 72 5.

ZHK P 2o 220D ITHKF L 2/ a€ 2 2 Td, Ehrhart BZHA LR UHZ LT
BBOEONE L ICERT 2. Thbb,

Lp(q) = #(qP N L) = #(P N ;L)

TdH5b.
ZHIK P OMEXTHINER (relative interior) % P° T&RT. P° _LOMTFREZHZ LIF 288 Lpo(q)
b q BT 2HEZIHATH D, ROMAEBRIHION TV S:

Lpo(q) = (~=1)"™ " Lp(~q).

“[%Z” Ehrhart 54 (Equivariant Ehrhart theory) 1%, ZHE O FROZ LIF 2 BO/E
RIAHTEZ %S DT, Stapledon [Stall] IZK DEAZN. KEHICIE, Ehrhart #EZIHKONK
bhiz, ZHARDOHEFRICHET 2 EREEL2EZ2DDTH 5.

By LiwcHLT, BRE I 2 p: I’ — GL(L) K-> TEHALTWS2T5. L FoFH
ZHKk P2 I OERATAETH 2 EIRET 2. % q € Zso KNLT, ¢PNL OEHIEREE
Xpg: I — CTET. D%,

Xpq(7) = #{w €qPNL | p()(x) = af} = #(qP"NL)=#(P'NiL)

TH5. 72RL, PPEPODpy) TEoTHEEZINDHAHRLEDEET, AHZHKATH S
[Stall, Lemma 5.4].

Theorem 1.4 ([Stall, Theorem 5.7]). xpgq (& ¢ BT 2HEZIHNATHZ. L, BMERII
Clo(I") DL RIS DZHATH 5.

Bz, I OHNILy = LI LT, xpy(l) =Lp(q) THZZebhb. ZOEKT, xp, &
Ehrhart #8Z2IHA D “BEH" THL2EZLNS.

*4 —fc, ged-property 17 E .
B LELIE, HTRBENC X 2 EVIXER SN 3.



Example 1.5. L =72 ¥ L, BREZHIK (BAFK) P =[0,1] x [0,3], P, =1[0,1] x [§,2] %%
Z%. Ehrhart ##ZHKIZNZHRDED TH %:

% ifg=1 (mod 3); %3@_1) ifg=1 (mod 3);
Lp, (q) = % ifg=2 (mod 3); Lp,(q) = @ if¢g=2 (mod 3);
% if g=3 (mod 3), %3(‘”3) ifg=3 (mod 3).

ZHAR P, (t€{1,2}) ITNLT, UK 2D I ={1,~v} »
v (w1, me) — (1 —x1,22)  for (z1,22) € P,
TEHLTW2ET5%. 2Ok %,

Pg:{(:pl,xg)EPt ) xlzé}

TH570,
2l ifg=2 (mod 6); 2l ifg=2 (mod 6);
™) % ifg=4 (mod 6); ™) %1 ifg=4 (mod 6);
XP1,q\7) = XP2,q\7) =
e % ifg=6 (mod 6); e % ifg=6 (mod 6);
0 otherwise, 0 otherwise
&%,
2 Results
2.1 Setting

% Ehrhart B0 & 512, FMHHEZHAORD DICHEA M(A;q) DEEGEEEZE 2T, “FZEMK
FHEZIHEA OMERZ MR LWV, 2072012, B FHEENOEHIC OV TV D0 %ERFHT 5.
I #EREEE U, BT LIcM UTREERS o I — GL(L) I X 2 BB RIEA S 2 6h T3
Y35, REL, pl3HERHTHZERETS. o E, 'O LY ~OEH pY : I' — GL(LY) %

p’'(M)(a) =aop(y™t) foryel, acLV

ERBEITEDD.
A={Hy,....,H,} 2 L LTERINTBEVHIEL T5. AH T OEHTAHE (I-invariant)
ThHBLIE, FEBEOy e T BEG Hy € AICHLT p(1)(H) € A ZfFFr 2icws. 72, F
By e D icHLT

p'(V({£ar, ..., tan}) = {+aq,..., tan}

THAHZL L BEMETD 3.
B qE€Lso TRULT, AREEL @ Ly ~NOIEH p, : I' — GL(Ly) 2%

pq(y)omqg =mgop(y) foryel



iz E5WEE 5. L LO@VHEEE AL D OEATILETH L &, 5 M(A;q) 13 T OfF
HATAZELREEGLIRDZehbh 5 [Uch, Lemma 2.3]. 24U, BIREE I 25 M(A;q) KIEAHLTW
e ERKT 3720, M(Aq) OBHIRINEZEZ 3 e TE 5. ZOBREEE ya,: [ — C
TRTZreTse, A (1) KkoT

XAq(Y) = #{x € M(A;q) ‘ pq(@) :x} forye I

L%, FHZ, T OBy = LIS LT, yaq(l) = x4 (q) ¥ 270, fEEZHAR

2.2 Quasi-polynomiality
Theorem 2.1 ([Uch, Theorem 2.6]).

(1) By e LITHLT, xa,q4(7y) & q BT 2%EZIHAT, ged-property Zifizz 3.
(2) xa,q & q BT 2HEZIEN T, ged-property i/ F. 72720, HWZIHEN y 4, DEWERHE
&, Clg(I") DRI >ZHATH 5.

AR TOHEEIEL, AHAD 7 A 77 DA ZIRNS. (2)1F, x4, OBEREBIC X 2 0L (1)
PoEENS. (1)1F, xa,(y) ZEREAICEDEFL, ROMEEMS 2 L TAHTE 3.

Lemma 2.2 ([KTTO08, Lemma 2.1)). f:Z° — Z™ % Z-#ERABI Y 55, % q € Zoo ITH LT,
o I IR [ HLBEINEAMLE TS, O E, ke f, 1d g BT 2 HESTHAT,
ged-property 23, X512, A% f ORBITIIE T B8 %,

#Hker f, = (H gcd{dj,q}) ¢ (2.1)

j=1

5.

72721, X (21)IZBWVT, r=rank A THDY, dy,...,d, T ADHERKFTHS. T4KbH, (X
unimodular 174 U, m X unimodular 174 V 23F#E L T
dy

UAV = dr ) d1|d2”d7‘

Ziii/z LT\ *6,

K (21) ZHWS Z 2T, xaq(y) Z0WL O0OTAOREFZHNVTERT ZENTES. LaL,
RIC L LB FEOBE n BT UL T 213, FHREIBELRITHIOMER L+ 4 N3 2. £
7o, BEFEAWLRRICE 5T, x4, DEAME—OFHET2 2N TEZ2%, —RICZDFEHNX
B/NTIEZR .

CZDEIRUV BBTEET 2. —EHTERL.



2.3 Via equivariant Ehrhart theory

I, x4 &FZ Ehrhart BEROEGRZ BN S.
Hp:I' — GL(L) BT ~NO1EH pr : I' — GL(T) Z#FE L,

pr(y)omr =nrop(y) foryel
Zilz L TWwad. KL,
GL(T) = {g :T—T ’ there exists ¢’ € GL(Lg) such that gomr =7wrog’ }

TH5.
% q € Lo LT,

T|q] ::{teT ‘ qt:O}:{ﬂT(x)eT ) quL}
5%, Tlq] DITIE T @ g-torsion point EFHINZ. T Z, ®HG f: Tq] — Ly
frimp(z) — my(z) forz e Lp

EAUT, Tlgl & Ly & I DERT 2220 e LCR—HTE 5. B2, A, OWZER M(A;q) & Tlq)
ETix

T(A)q] = {WT(Q;) e Tq) ] ai(z) € Z forallie {1,...,n} }
SHIET B, Lo, MZMRORHEESIER xu, 138, T(A)q OEBIREY 5T 5
xaq() = #{t e Tl | pr()(t) =t |
BkeZ T LT
HF = {xeLR ) () :k}
LEE, 774 YHBTHOES

AME = { HF

ie{l,...,n}, keZ}
522, 774 VEE AM OHZLR

MAT :=Lz\ |J H
He At
WKRLT, T(A)q] = mr(M(A¥))NT[q] &% Z LICHEET 3
WZel M (A HEis % A OB (chamber) ¥ R, A OHBE2AR» L 2EEE
C(AM) v 32. T LoWiZEr T(A) OEERTEER»r 68 2E88% Cr T3,

er = {m2(C) | C e ca)}



Y725, sBEOELAED, &HE C e AT LT, mr(C) LD g-torsion point ZE X LiF 5 M
Bz
THRT. LwT(C’) (q) & q BT 2EZHATHS. iz C ﬁ‘ﬁ?ﬁf%ﬂ&i LWT(C) ¥ C @ Ehrhart

BEZEA Lo & —8T5. 2O, T(A)q D% T(A) OERERT ZLICHMZ 58T, ADF
PEHEZIER 4 1%

X4@) = Y Layo)(@)

ﬂ'T(C)ECT

YRTZENTES.

DIR, Cr ®Jt mp(C) ZHIZ C TRIZWXT 5. BREE T OEH pr : I’ — GL(T) & Cr ~
OERZHEET 5. COFHATO y X 2EEROEEE C), Tt C € Cr [T 2EEHTHZ o
THT:

cp={cecr|sc)=c}, ro={yer|yc)=c}.

Wkt Ic 12X 5 CNTq OBHBERE x5, : [c — CTERI:

Xg?q(v):#{tECﬂT[q] ’ PT(’Y)(t)Zt} for y € I'c.

Y
n
@
&
v
[

ToOrE, #KyelTHLT, T(Alg @ pr(y) i© & 2EELE T(A) OHEEERS
v

XAq( Z X (2.2)

cecy,

ERBIEBRDND
{C1,...,Cx} &2 Cp O I'"PIEDZEENRKRE T 5. xa,q DFEZRD Ehrhart ¥#ZIHKZ H W7
TR LTXRERS.

Theorem 2.3 ([Uch, Theorem 4.3]). %% q € Z~o XL T,

Zlndpc XC -

Theorem 2.3 133X (2.2) 22563613 (2 ZTOIMHIEKT 2). Fic, AT oMEBTATEH
FRTHBEE, xa,q VFAZMRD Ehrhart #EZIHKXOFEEROME LTRESL L 2EKT 5. L
oo T, xaq FAHEBHEEK O TFROBZ LFICLoTEHRET 22N TE 2.

Example 2.4. L =721 LT, 208 I = {1,7} DfEM p: I’ — GL(Z?) %

p(y) i (w1, 29) — (—x1,22)  for (x1,29) € Z2



THEZHNTWB T 5. Example 1.3 TEZR LB FHEE A X ZOEHICELTARETH .
ZDEE, py(7) CEBEERDEES M(A;q)" &

M(Aq)" = { (@1,22) € (Z/q2)* | @1 = 4, 322 20 (mod q) }
ERBD,
Xa,q(7) = #M(A;q)" = #{ (w1,72) € z? ‘ T = %, 0<my <gq, 22 & {0, %7 %q}}
0 if ged{6,q} =1,3;

={qg—1 if ged{6,q} =2;
qg—3 if ged{6,q} =6

&R 5.
T =R?/7? LOZM T(A) 1% 3 D DB

Pf:(()?l)X(Ov%)v P;:(Oﬂnx(%ﬂ%)v P??:(071)X(%71)7

o5, HERTIZTOTND pr DIEFHTARETH 2728, xa,, FFAZKD Ehrhart #Z2HA O
LT

XA,g = XPg,g T XPg,q T XP2,q

YRTZENTES.
F72, Xa,q D q BT 2EZHKLE L TORRIEIRDED TH %:

s (XR@® — 2XRq + XR) if ged{6, ¢} = 1;

) 3(xra® = Bxr — 21)g + 2xr — 21) if ged{6,¢} = 2;

e = 3 (xr¢*> — 4xrq + 3xR) if ged{6,q} = 3;
s(xrg® — (5xr — 21)q + 6xr — 61) if gcd{6,q} = 6.

722U, xr & I OEAIRBOEE, 1 ZEHALEE (TXTOTIN LT 1 2R3 2RT.

BE 3k
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