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概要
整数係数で定義される超平面配置に対して，対応する mod q 配置の補空間の数え上げ関数と
して特性準多項式が定義される．これは，q に関する準多項式であり，超平面配置の最も重要な
不変量である特性多項式を含んでいる．本稿では，超平面配置に有限群の作用を与え，超平面配
置の mod q 補空間に関する置換指標について考察する．この置換指標が q に関する準多項式で
あること，同変版の Ehrhart 準多項式を用いて表すことができることを紹介する．

1 Introduction

1.1 Hyperplane arrangement

V を体 K上の ℓ次元線形空間とする．V の超平面 (hyperplane)とは，V の ℓ− 1次元 (アフィ
ン) 部分空間のことをいう．すなわち，V の超平面 H は，零でない線形関数 α : V −→ K と定数
b ∈ Kを用いて

H = α−1(b) =
{
x ∈ V

∣∣∣ α(x) = b
}

と表される．V 上の超平面配置 (hyperplane arrangement)とは，V の超平面の有限集合のこと
をいう．超平面配置の研究は，代数や組合せ論だけでなく，トポロジーや代数幾何，応用数学など多
岐にわたる (cf. [Yos25])．
V 上の超平面配置 Aの部分配置 (部分集合) B に対して，

HB :=

{
V B = ∅;⋂

H∈BH B 6= ∅

と定める．Aの特性多項式 (characteristic polynomial) とは，

χA(t) :=
∑
B⊆A
HB ̸=∅

(−1)#BtdimHB

のことをいう．χA(t)は次数 ℓ = dimV の monic 多項式である．特に，

• ℓ = 1のとき，χA(t) = t−#A;
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• ℓ = 2のとき，

χA(t) = t2 −#A · t+
∑

p: 交点

(
#{H ∈ A | H 3 p } − 1

)
となる．
特性多項式は，Aの超平面たちがどのように交わっているかという情報だけから得られる多項式で
ある．一方で，特性多項式は超平面配置 Aに関する様々な情報を有しており，超平面配置の最も重
要な不変量であるといわれることもある．たとえば，超平面配置 Aの補空間

M(A) := V \
⋃

H∈A
H

に関して，次のことが知られている．

Theorem 1.1. Aを K上の線形空間 V 上の超平面配置とする．

• (Zaslavsky 1975) K = Rであるとき，Aが少なくとも一つの (0次元)交点をもてば*1，
– M(A)の連結成分の個数は |χA(−1)|;
– M(A)の有界な連結成分の個数は |χA(1)|.

• (Orlik–Solomon 1980) K = Cであるとき，M(A)の Poincaré 多項式は次と等しい:

(−t)dimV χA(−t−1).

1.2 Characteristic quasi-polynomial

L ∼= Zℓ を格子 (lattice)とし，LR := L⊗Rとする．特性準多項式のために，格子 L上で定義され
る超平面配置を定義する．L∨ := Hom(L,Z)を Lの双対とする．零でない元 α1, . . . , αn ∈ L∨ を固
定し，LR の超平面 Hi を

Hi = Hαi
:=

{
x ∈ LR

∣∣∣ αi(x) = 0
}

で定義する．このような超平面を L 上で定義される超平面といい，それらの有限集合 A =

{H1, . . . , Hn} を L 上で定義される超平面配置という．つまり，L 上で定義される超平面は，整
数係数の一次式を用いて表されるような超平面である．
各正整数 q ∈ Z>0 に対して，Lq := L/qLとおき，πq : L −→ Lq を自然に定義される射影とする．

各超平面 Hi に対して，Lq の “超平面”を

Hi,q :=
{
πq(x) ∈ Lq

∣∣∣ αi(x) ≡ 0 (mod q)
}

で定め，Lq 上の “超平面配置” Aq := {H1,q, . . . , Hn,q}の補空間

M(A; q) := Lq \
⋃

Hi,q∈Aq

Hi,q

=
{
πq(x) ∈ Lq

∣∣∣ αi(x) 6≡ 0 (mod q) for all i ∈ {1, . . . , n}
}

*1 このとき，Aは本質的 (essential)であるという．



を考える．この有限集合の位数 #M(A; q)について，次のことが知られている．

Theorem 1.2 ([KTT08, Theorem2.4]). #M(A; q) は q に関する準多項式である．すなわち，正
整数 ñ ∈ Z>0 と多項式 f (1), . . . , f (ñ) ∈ Z[t]が存在して，

#M(A; q) = f (r)(q) if q ≡ r (mod ñ).

さらに，次を満たす:

(1) gcd{ñ, r1} = gcd{ñ, r2}であるとき，f (r1) = f (r2) (gcd-property);

(2) gcd{ñ, r} = 1であるとき，f (r) は Aの特性多項式 χA に等しい．

この準多項式を Aの特性準多項式 (characteristic quasi-polynomial)と呼び，χquasi
A で表す:

χquasi
A (q) = #M(A; q).

準多項式はいくつかの多項式を並べたようなものであり，“周期的な多項式”と言われることがある．
正整数 ñは準多項式の周期 (period)，各多項式 f (r) は準多項式の第 r構成素 (r-th constituent)

と呼ばれる．準多項式の周期は一意的ではないことに注意する．周期となりうる正整数のうち最小の
ものを準多項式の最小周期 (minimum period)という．
Theorem 1.2 (2)によると，qが十分大きな素数であれば，χquasi

A (q) = χA(q)となる*2．したがっ
て，格子 L上で定義されるような超平面配置 Aの特性多項式は，いくつかの十分大きな素数 q に対
する M(A; q)の数え上げによって計算できることがわかる*3．

Example 1.3. L = Z2 とし，L上の超平面配置 A = {H1,H2}を

H1 :=
{
(x1, x2) ∈ R2

∣∣∣ x1 = 0
}
, H2 :=

{
(x1, x2) ∈ R2

∣∣∣ 3x2 = 0
}

で定める．Aの特性多項式は χA(t) = t2 − 2t+ 1 = (t− 1)2 である．
各 q ∈ Z>0 に対して，

M(A; q) =
{
(x̄1, x̄2) ∈ (Z/qZ)2

∣∣∣ x1 6≡ 0, 3x2 6≡ 0 (mod q)
}

であるから，

χquasi
A (q) = #M(A; q) = #

{
(x1, x2) ∈ Z2

∣∣∣ 0 ≤ x1, x2 < q, x1 6= 0, x2 6∈ {0, q3 ,
2q
3 }

}
=

{
(q − 1)2 if gcd{3, q} = 1;

(q − 1)(q − 3) if gcd{3, q} = 3

となる．

*2 この事実は，Kamiya–Takemura–Terao 以前からも知られていた (cf. [Yos25, §12.2])．
*3 このようにして特性多項式を計算する方法は有限体法 (finite field method)と呼ばれている．



1.3 Group representation

この節で，有限群の表現について本稿に必要な事柄をまとめる．
Γ を有限群，V を C 上の線形空間とする．群準同型 ρ : Γ −→ GL(V ) を Γ の V 上の表現

(representation) という．表現 ρの指標 (character)とは，Γ 上の関数 χρ := tr ◦ρのことをい
う．ただし，trは線形写像のトレースを与える関数である．以下，Γ の表現の指標を単に Γ の指標
という．
Γ の類関数 (class function)とは，関数 φ : Γ −→ Cで

φ(σ−1γσ) = φ(γ) for γ, σ ∈ Γ

を満たすものをいい，Γ の類関数全体を Cl(Γ )で表す．Cl(Γ )は Γ の複素数値関数がなす内積空間
の部分空間である．ただし，内積は

(φ,ψ) =
1

#Γ

∑
γ∈Γ

φ(γ)ψ(γ)

で与えられる．Γ の指標は類関数で，Γ の既約指標全体 {χ1, . . . , χk}は，Cl(Γ )の正規直交基底を
なす．Γ の既約指標の有理数係数の一次結合で表される Γ の類関数の集合を

ClQ(Γ ) :=
{
m1χ1 + · · ·+mkχk ∈ Cl(Γ )

∣∣∣ mi ∈ Q
}

とする．ClQ(Γ )の元が Γ の指標であるためには，Γ の既約指標の非負整数係数の一次結合として表
せることが必要十分である．
有限群 Γ が有限集合X に作用しているとする．すなわち，Γ は X の対称群の部分群とみなせる．

X で生成される C上の有限次元線形空間 CX :=
⊕

x∈X Cxに対して，Γ の作用によって群準同型
ρX : Γ −→ GL(CX)が定まる．これを X の置換表現 (permutation representation) といい，
その指標 χρX

をX の置換指標 (permutation character)という．各 γ ∈ Γ に対して，CX の基
底 X に関する ρX(γ)の表現行列は置換行列である．よって，X の置換指標は

χρX
(γ) = #

{
x ∈ X

∣∣∣ γx = x
}

(1.1)

を満たす．
有限群 Γ は，左からの積が引き起こす自分自身への作用をもつ．この作用によって得られる置換表

現は正則表現 (regular representation)と呼ばれる．正則表現の指標を χR で表すとき，式 (1.1)

によって

χR(γ) =

{
#Γ if γ = 1;

0 if γ 6= 1

となる．
H を Γ の部分群とする．H の指標 θ : H −→ Cにおける Γ の誘導指標 (induced character)

とは，次で定まる指標 IndΓH θ : Γ −→ Cのことをいう:(
IndΓH θ

)
(γ) =

1

#H

∑
σ∈Γ

σ−1γσ∈H

θ(σ−1γσ).



1.4 Equivariant Ehrhart theory

Lを格子とし，LR := L⊗Rとする．P ⊆ LR を有理多面体とする．つまり，P はすべての頂点が
有理点であるような多面体である．各 q ∈ Z>0 に対して，P を q 倍に膨らませた多面体を qP で表
す．このとき，qP 上の格子点を数え上げる関数

LP (q) := #(qP ∩ L)

は q に関する準多項式となる*4．これを Ehrhart 準多項式 (Ehrhart quasi-polynomial) と呼
ぶ．P が格子多面体 (すべての頂点が L上にある多面体)であるとき，LP は単に多項式 (最小周期 1

の準多項式)となる．
多面体 P を膨らませる代わりに格子 Lを縮小させることでも，Ehrhart準多項式と同じ数え上げ

関数が得られることに注意する．すなわち，

LP (q) = #(qP ∩ L) = #(P ∩ 1
qL)

である．
多面体 P の相対的内部 (relative interior) を P ◦ で表す．P ◦ 上の格子点を数え上げる関数 LP◦(q)

も q に関する準多項式であり，次の相互関係が知られている:

LP◦(q) = (−1)dimP LP (−q).

“同変” Ehrhart 理論 (Equivariant Ehrhart theory)とは，多面体上の格子点の数え上げを群の作
用込みで考えるもので，Stapledon [Sta11] により導入された．大まかには，Ehrhart 準多項式の代
わりに，多面体の格子点に関する置換指標を考えるものである．
格子 L に対して，有限群 Γ が ρ : Γ −→ GL(L) によって作用しているとする．L 上の有理

多面体 P が Γ の作用で不変であると仮定する*5．各 q ∈ Z>0 に対して，qP ∩ L の置換指標を
χP,q : Γ −→ Cで表す．つまり，

χP,q(γ) = #
{
x ∈ qP ∩ L

∣∣∣ ρ(γ)(x) = x
}
= #(qP γ ∩ L) = #(P γ ∩ 1

qL)

である．ただし，P γ は P の ρ(γ) によって固定される点からなる部分集合で，有理多面体である
[Sta11, Lemma 5.4]．

Theorem 1.4 ([Sta11, Theorem 5.7]). χP,q は q に関する準多項式である．ただし，各構成素は
ClQ(Γ )の元を係数にもつ多項式である．

特に，Γ の単位元 γ = 1に対して，χP,q(1) = LP (q)であることがわかる．この意味で，χP,q は
Ehrhart 準多項式の “精密化”であると考えられる．

*4 一般に，gcd-propertyは満たさない．
*5 しばしば，平行移動による違いは無視される．



Example 1.5. L = Z2 とし，有理多面体 (長方形) P1 := [0, 1] × [0, 13 ]，P2 := [0, 1] × [ 13 ,
2
3 ]を考

える．Ehrhart 準多項式はそれぞれ次の通りである:

LP1
(q) =


(q+1)(q+2)

3 if q ≡ 1 (mod 3);

(q+1)2

3 if q ≡ 2 (mod 3);

(q+1)(q+3)
3 if q ≡ 3 (mod 3),

LP2
(q) =


(q+1)(q−1)

3 if q ≡ 1 (mod 3);

(q+1)2

3 if q ≡ 2 (mod 3);

(q+1)(q+3)
3 if q ≡ 3 (mod 3).

多面体 Pt (t ∈ {1, 2})に対して，位数 2の群 Γ = {1, γ}が

γ : (x1, x2) 7−→ (1− x1, x2) for (x1, x2) ∈ Pt

で作用しているとする．このとき，

P γ
t =

{
(x1, x2) ∈ Pt

∣∣∣ x1 = 1
2

}
であるため，

χP1,q(γ) =



q+1
3 if q ≡ 2 (mod 6);

q+2
3 if q ≡ 4 (mod 6);

q+3
3 if q ≡ 6 (mod 6);

0 otherwise,

χP2,q(γ) =



q+1
3 if q ≡ 2 (mod 6);

q−1
3 if q ≡ 4 (mod 6);

q+3
3 if q ≡ 6 (mod 6);

0 otherwise

となる．

2 Results

2.1 Setting

同変 Ehrhart 理論のように，特性準多項式の代わりに集合M(A; q)の置換指標を考えて，“同変版
特性準多項式”の理論を構築したい．そのために，超平面配置への群作用についていくつか準備する．
Γ を有限群とし，格子 Lに対して群準同型 ρ : Γ −→ GL(L)による線形な作用が与えられている
とする．ただし，ρは単射であると仮定する．このとき，Γ の L∨ への作用 ρ∨ : Γ −→ GL(L∨)を

ρ∨(γ)(α) = α ◦ ρ(γ−1) for γ ∈ Γ, α ∈ L∨

となるように定める．
A = {H1, . . . , Hn}を L上で定義された超平面配置とする．Aが Γ の作用で不変 (Γ -invariant)

であるとは，任意の γ ∈ Γ および Hi ∈ Aに対して ρ(γ)(Hi) ∈ Aを満たすときにいう．また，任
意の γ ∈ Γ に対して

ρ∨(γ)
(
{±α1, . . . ,±αn}

)
= {±α1, . . . ,±αn}

であることとも同値である．
各 q ∈ Z>0 に対して，有限群 Γ の Lq への作用 ρq : Γ −→ GL(Lq)が

ρq(γ) ◦ πq = πq ◦ ρ(γ) for γ ∈ Γ



を満たすように定まる．L上の超平面配置Aが Γ の作用で不変であるとき，集合M(A; q)は Γ の作
用で不変な集合となることがわかる [Uch, Lemma 2.3]．これは，有限群 Γ がM(A; q)に作用してい
ることを意味するため，M(A; q)の置換指標を考えることができる．この置換指標を χA,q : Γ −→ C
で表すことにすると，式 (1.1)によって

χA,q(γ) = #
{
x ∈M(A; q)

∣∣∣ ρq(x) = x
}

for γ ∈ Γ

となる．特に，Γ の単位元 γ = 1 に対しては，χA,q(1) = χquasi
A (q) となるため，特性準多項式は

χA,q によって精密化される．

2.2 Quasi-polynomiality

Theorem 2.1 ([Uch, Theorem 2.6]).

(1) 各 γ ∈ Γ に対して，χA,q(γ)は q に関する準多項式で，gcd-property を満たす．
(2) χA,q は q に関する準多項式で，gcd-property を満たす．ただし，準多項式 χA,q の各構成素
は，ClQ(Γ )の元を係数にもつ多項式である．

本稿での証明は割愛し，証明のアイデアのみを述べる．(2)は，χA,q の既約指標による分解と (1)

から得られる．(1)は，χA,q(γ)を包除原理により変形し，次の補題を使うことで証明できる．

Lemma 2.2 ([KTT08, Lemma 2.1]). f : Zℓ −→ Zm を Z-準同型とする．各 q ∈ Z>0 に対して，
fq : Zℓ

q −→ Zm
q を f から誘導される準同型とする．このとき，#ker fq は q に関する準多項式で，

gcd-propertyを満たす．さらに，Aを f の表現行列とするとき，

#ker fq =

 r∏
j=1

gcd{dj , q}

 qℓ−r (2.1)

となる．

ただし，式 (2.1)において，r = rankAであり，d1, . . . , dr は Aの単因子である．すなわち，ℓ次
unimodular 行列 U，m次 unimodular 行列 V が存在して

UAV =



d1
. . .

dr
0

. . .

 , d1 | d2 | · · · | dr

を満たしている*6．
式 (2.1)を用いることで，χA,q(γ)をいくつかの行列の単因子を用いて表すことができる．しかし，

次元 ℓ と超平面の枚数 nが増加すればするほど，計算が必要な行列の個数とサイズは増加する．ま
た，単因子を用いた表示によって，χA,q の周期を一つ計算することができるが，一般にその周期は
最小ではない．

*6 このような U, V は必ず存在する．一意的ではない．



2.3 Via equivariant Ehrhart theory

最後に，χA,q と同変 Ehrhart 理論の関係を述べる．
T := LR/Lとおき，πT : LR −→ T を自然に定まる射影とする．このとき，有限群 Γ の Lへの作

用 ρ : Γ −→ GL(L)が T への作用 ρT : Γ −→ GL(T )を誘導し，

ρT (γ) ◦ πT = πT ◦ ρ(γ) for γ ∈ Γ

を満たしている．ただし，

GL(T ) :=
{
g : T −→ T

∣∣∣ there exists g′ ∈ GL(LR) such that g ◦ πT = πT ◦ g′
}

である．
各 q ∈ Z>0 に対して，

T [q] :=
{
t ∈ T

∣∣∣ qt = 0
}
=

{
πT (x) ∈ T

∣∣∣ qx ∈ L
}

とする．T [q]の元は T の q-torsion pointと呼ばれる．このとき，全単射 f : T [q] −→ Lq;

f : πT (x) 7−→ πq(x) for x ∈ LR

を介して，T [q]と Lq は Γ が作用する空間として同一視できる．特に，Aq の補空間M(A; q)は T [q]

上では

T (A)[q] :=
{
πT (x) ∈ T [q]

∣∣∣ αi(x) 6∈ Z for all i ∈ {1, . . . , n}
}

に対応する．したがって，同変版の特性準多項式 χA,q は，T (A)[q]の置換指標と一致する:

χA,q(γ) = #
{
t ∈ T (A)[q]

∣∣∣ ρT (γ)(t) = t
}

各 k ∈ Zに対して

Hk
i :=

{
x ∈ LR

∣∣∣ αi(x) = k
}

とおき，アフィン超平面の集合

Aaff :=
{
Hk

i

∣∣∣ i ∈ {1, . . . , n}, k ∈ Z
}

を与える．アフィン配置 Aaff の補空間

M(Aaff) := LR \
⋃

H∈Aaff

H

に対して，T (A)[q] = πT (M(Aaff)) ∩ T [q]となることに注意する．
補空間 M(Aaff) 連結成分を Aaff の部屋 (chamber) と呼ぶ．Aaff の部屋全体からなる集合を

C(Aaff)とする．T 上の補空間 T (A)の連結成分全体からなる集合を CT とすると，

CT =
{
πT (C)

∣∣∣ C ∈ C(Aaff)
}



となる．記号の乱用だが，各部屋 C ∈ Aaff に対して，πT (C)上の q-torsion point を数え上げる関
数を

LπT (C)(q) = #(πT (C) ∩ T [q])

で表す．LπT (C)(q)は qに関する準多項式である．特に C が有界であれば，LπT (C) は C の Ehrhart

準多項式 LC と一致する．このとき，T (A)[q]の点を T (A)の連結成分ごとに数えることで，Aの特
性準多項式 χquasi

A は

χquasi
A (q) =

∑
πT (C)∈CT

LπT (C)(q)

と表すことができる．
以下，CT の元 πT (C)を単に C で表すことにする．有限群 Γ の作用 ρT : Γ −→ GL(T )は CT へ

の作用を誘導する．この作用での γ による固定点の集合を Cγ
T，元 C ∈ CT に関する固定部分群を ΓC

で表す:

Cγ
T :=

{
C ∈ CT

∣∣∣ γ(C) = C
}
, ΓC :=

{
γ ∈ Γ

∣∣∣ γ(C) = C
}
.

部分群 ΓC による C ∩ T [q]の置換表現を χΓC

C,q : ΓC −→ Cで表す:

χΓC

C,q(γ) = #
{
t ∈ C ∩ T [q]

∣∣∣ ρT (γ)(t) = t
}

for γ ∈ ΓC .

このとき，各 γ ∈ Γ に対して，T (A)[q]の ρT (γ)による固定点を T (A)の連結成分ごとに数えるこ
とで

χA,q(γ) =
∑

C∈Cγ
T

χΓC

C,q(γ) (2.2)

となることがわかる．
{C1, . . . , Ck}を CT の Γ -軌道の完全代表系とする．χA,q の同変版の Ehrhart 準多項式を用いた

表示として次を得る．

Theorem 2.3 ([Uch, Theorem 4.3]). 各 q ∈ Z>0 に対して，

χA,q =

k∑
i=1

IndΓΓCi
χ
ΓCi

Ci,q
.

Theorem 2.3は式 (2.2)から得られる (ここでの証明は省略する)．特に，Aaff の部屋がすべて有
界であるとき，χA,q が同変版の Ehrhart準多項式の誘導指標の和として表せることを意味する．し
たがって，χA,q は有理多面体上の格子点の数え上げによって計算することができる．

Example 2.4. L = Z2 に対して，位数 2の群 Γ = {1, γ}の作用 ρ : Γ −→ GL(Z2)が

ρ(γ) : (x1, x2) 7−→ (−x1, x2) for (x1, x2) ∈ Z2



で与えられているとする．Example 1.3 で定義した超平面配置 A はこの作用に関して不変である．
このとき，ρq(γ)による固定点の集合M(A; q)γ は

M(A; q)γ =
{
(x̄1, x̄2) ∈ (Z/qZ)2

∣∣∣ x1 ≡ q
2 , 3x2 6≡ 0 (mod q)

}
となるため，

χA,q(γ) = #M(A; q)γ = #
{
(x1, x2) ∈ Z2

∣∣∣ x1 = q
2 , 0 ≤ x2 < q, x2 6∈ {0, q3 ,

2q
3 }

}
=


0 if gcd{6, q} = 1, 3;

q − 1 if gcd{6, q} = 2;

q − 3 if gcd{6, q} = 6

となる．
T = R2/Z2 上の補空間 T (A)は 3つの連結成分

P ◦
1 = (0, 1)× (0, 13 ), P ◦

2 = (0, 1)× ( 13 ,
2
3 ), P ◦

3 = (0, 1)× ( 23 , 1),

からなる．連結成分はいずれも ρT の作用で不変であるため，χA,q は同変版の Ehrhart 準多項式の
和として

χA,q = χP◦
1 ,q + χP◦

2 ,q + χP◦
3 ,q

と表すことができる．
また，χA,q の q に関する準多項式としての表示は次の通りである:

χA,q =



1
2 (χRq

2 − 2χRq + χR) if gcd{6, q} = 1;

1
2 (χRq

2 − (3χR − 21)q + 2χR − 21) if gcd{6, q} = 2;

1
2 (χRq

2 − 4χRq + 3χR) if gcd{6, q} = 3;

1
2 (χRq

2 − (5χR − 21)q + 6χR − 61) if gcd{6, q} = 6.

ただし，χR は Γ の正則表現の指標，1は自明な指標 (すべての元に対して 1を返す関数)を表す．
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